
Instructions how to use the DAQ in a MINIBALL experiment

R. Lutter

May 25, 2005

Abstract

This document describes how to use the MARaBOOU data acquisition system
in a MINIBALL experiment.

1



Contents

1 Getting started 2
1.1 Login to the DAQ computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 How to set up and control a list-mode run . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 How to run in AutoFile mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Display of scaler data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 PPAC beam monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Beam rate monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Laser on/off monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Display of histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.9 How to reset MBS manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 How to generate and to compile code . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.11 How to establish a directory for an offline session . . . . . . . . . . . . . . . . . . . 13
1.12 How to start a new session in a new directory . . . . . . . . . . . . . . . . . . . . . 14
1.13 How to produce an ascii dump of .med data . . . . . . . . . . . . . . . . . . . . . . 15

2 Set up and control XIA DGF-4C modules 16

3 How to perform an energy calibration 20

4 How to do a Doppler correction 22
4.1 Doppler correction modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Appendix 23
5.1 Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Files related to Config.C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Various file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.1 Cluster definition files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Energy calibration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Doppler correction file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



1 Getting started

1.1 Login to the DAQ computer

To login into the DAQ computer do:

At CERN: ssh miniball@pcepuis20.cern.ch

or at Cologne: ssh miniball@minidaq.ikp.uni-koeln.de

Make sure that your working directory is the one prepared for the current experiment.
A pwd command should give something like /d1/miniball/<my working directory>:

/d1/miniball/cern-040719 for example

Use cd /d1/miniball/<my working directory> in case you are in the wrong place.
To start a new session in a new working directory refer to 1.12 .

From now on it is assumed that you are logged into the DAQ computer.

1.2 How to set up and control a list-mode run

To learn how to generate your code and to compile analysis and readout parts, respectively, see 1.10.

To start the control GUI type:

C analyze

Once the GUI has popped up (fig. 1) you should check if all settings are as expected:

• Set RUN number appropriate. It will be incremented after each run.

• Choose TcpIp to connect to the PowerPC and the VME crate.

• Choose ppc-0 from the Master list.
This will set the Readout processor to ppc-0 automatically.

• Set Directory to <my working directory>/ppc

• The name of the ROOT file to store histograms should be histsRUN.root,
RUN will on start be substituted by the current run number.

• Set Mapped name to none

• Enable or disable raw data output. The name of the output file should be runRUN.med,
extension .med is mandatory to produce med formatted data.

If you made some changes to these settings you should save them pressing (fig. 2)

Save Setup → Save current settings

Now press

Clear MBS

This should stop all pending MBS processes and put MBS into an idle state. You should end up with
the message

c ana: Ok, all MBS processes disappeared

In case of problems you have to reset MBS manually (see 1.9).

2



Figure 1: C analyze - GUI to control a list-mode run

Figure 2: C analyze: how to save setup

3



To configure MBS for your experiment press

Configure

After having selected wether a file should be written or not press

Start

To stop the run press

Stop

This will close the list-mode data file and write all histograms to a ROOT file.

1.3 How to run in AutoFile mode

As file sizes are restricted to 2 GB one has to keep files at sizes below this limit.
You may activate the AutoFile mode to split the raw data stream into several files in a production
run. Choose from the menu bar (fig. 3)

Parameters → Maximum output file size

insert the value you want in MB, then activate

Parameters → Enable automatic restart after max file size

This will cause C analyze to stop the run as soon as the given file size is reached and to continue
with the next run (run number will be increased).
As the size check is done every second you should set the maximum file size a true bit below the
limit of 2 GB (let’s say to 1800) to give C analyze a chance to stop before the limit is reached.
Otherwise the resulting file may be truncated.

To leave AutoFile mode simply press Stop .

Figure 3: C analyze: how to set autoFile mode

4



1.4 Display of scaler data

To display contents of the VME scalers as well as the internal dgf scalers
open two separate xterm windows. Then type

scaler.sh (without preceeding ”./”!)

to display the VME scalers, and

dgfscaler.sh (without preceeding ”./”!)

to display dgf scalers, respectively.
Scaler data on the screen will be updated every second.

Figure 4: Display of scaler data

Figure 5: Display of internal dgf scalers

5



1.5 PPAC beam monitor

To show the PPAC profile simply type

ppac.C

This will display PPAC currents for X and Y strips, respectively, with a repetition rate of 1 per
second.

Figure 6: PPAC beam monitor

6



1.6 Beam rate monitor

To start the rate monitor type

rateMon.C

It displays counting rates for DGF cores as well as the beam dump detector. An alarm may be
triggered if the rate goes below a given threshold.

Counting rates are taken from a file produced by function TUsrEvtReadout::PeakCheck() in
the online daq process (see code in file udef/BuildEvent.cxx). It integrates data in two windows
given by definitions in .rootrc :

TMrbAnalyze.PeakCheck.eMin: 276
TMrbAnalyze.PeakCheck.eMax: 282
TMrbAnalyze.PeakCheck.ratioFact: 1
TMrbAnalyze.PeakCheck.eMin2: 639
TMrbAnalyze.PeakCheck.eMax2: 632
TMrbAnalyze.PeakCheck.ratioFact2: 1

Therefore one has to set these values properly before starting the daq process.

rateMon.C provides the following commands:

start(range, avgShort, avgLong [, withBeamDump])

start rate display for DGF cores (and beam dump detector)
range history/histogram range (s)
avgShort average time (s) - short term
avgLong average time (s) - long term
withBeamDump show beam dump rates if kTRUE

stop() stop display
cont() continue display
startwd(thresh, avgTime)

start watchdog to trigger alarm if beam below threshold
thresh trigger threshold for ”beam low” alarm
avgTime average time (s)

stopwd() stop watchdog
bye() exit program

Any of these commands may be given after the ROOT prompt manually. To start automatically
with predefined settings you may create a startup file named .rateMon.rc in your working di-
rectory:

{
start(100, 17, 84, kFALSE);
startwd(1000, 19);

}

(Keep in mind: ROOT commands have to be enclosed in curly braces {. . . }!)

In this example rateMon.C will automatically start the rate display:

- history range is 100
- averaging will be done over 17 and 84 seconds, respectively
- as there is no beam dump detector in the experimental setup only core rates will be displayed
- if core rates go below a threshold of 1000 averaged over 19 seconds an alarm will be issued

7



1.7 Laser on/off monitor

To show the laser on/off scaler data type

laser.C

This will give you a plot of the laser data over the last 20 minutes with a binning of 4 seconds.

Figure 7: Laser on/off monitor

8



1.8 Display of histograms

To look at spectra you have to start the Histogram Presenter:

HistPresent

To connect to a running C analyze click on Hists from M analyze .

host should be localhost ,
port has to be 9090 .

Be aware that only online histograms may be accessed this way, only as long as data acquisition
is running. To look at histograms saved from previous runs click on

Show Filelist .

Figure 8: HistPresent

Figure 9: Connect to M analyze

1.9 How to reset MBS manually

In case the Clear MBS button of C analyze doesn’t work as expected you have to reset MBS
manually. (Open a new xterm, then) type

rsh ppc-0 to login to the ppc.

Then change directory to the current experiment:

cd <my working directory>/ppc (example: cd cern-040719/ppc )
Then type

resmbs

9



This should kill all MBS processes (the ones starting with m in the name when doing ps ax ).

If there is some error message during resmbs (”device busy” or similar) you should do a ps ax

and look for the line containing the m prompt process:

53 1 53 18 168 8 68 0.05 miniball W /mbs/deve/bin RIO2/m prompt

Pick the first number from this line then and kill this process by typing

kill <proc no> (this example: kill 53 )

Type logout to leave the ppc session.

1.10 How to generate and to compile code

To update the DGF cluster settings you have to edit files

cluster.def settings for active clusters
cluster-void.def settings for clusters which are currently inactive but have DGF modules assigned
other-dgfs.def settings for other DGF modules such as time stamper, beam dump detector, etc.

The file format is adopted from Nigel Warr’s Miniball Configuration sheet. See 5.3.1 for a descrip-
tion.

CAVEAT: Make sure that all existing DGF modules are defined in these files. Otherwise any
uninitialized DGF will spoil its CAMAC crate!

To generate your code from the config file simply type

./Config.C

This will generate all code files needed for the experiment (fig. 10). Existing files will be overwrit-
ten.

To compile the ROOT part of the code (running on your desktop under Linux) type

make -f DgfAnalyze.mk clean all

This will compile and link program M analyze which is then used by the control GUI C analyze.
This step has to be repeated whenever you made changes in the configuration or in the user part
of your code (code files residing in the udef subdirectory).

To compile the readout part of your code (running under MBS) call C analyze , then click on

Mbs Control → Compile readout function (fig. 11)

Alternatively you may compile the readout code in the ppc directly:

rsh ppc-0

cd <my working directory>/ppc

make -f DgfReadout.mk clean all

logout

10



This will produce MBS task m read meb in subdirectory ppc.
Repeat this step whenever the hardware config has changed (e.g. number and position of VME and
CAMAC modules).

Figure 10: Config.C: generating code files

11



Figure 11: C analyze: how to compile readout task

12



1.11 How to establish a directory for an offline session

In an online run only a few diagnostic tests may be performed beside data taking. To evaluate
data one has to establish an offline session in parallel.

To start an offline session you first have to create directories and subdirectories and to copy and
link files which are identically used in online and offline sessions. script mkoffl will do the job:

cd /d1/miniball

mkoffl <online dir>

It creates an offline directory ¡online dir¿-offline. This naming convention will later on be used
by script Config.C to distinguish between online and offline.

mkoffl will do the following:

• create subdirectories <online dir>-offline/udef and <online dir>-offline/udef

• copy <online dir>/.rootrc

• copy contents of subdir <online dir>/config

• copy ”ifdefs” in <online dir>/SetCppIfdefs.C

• copy calibration files <online dir>/*.cal

• link config file <online dir>/Config.C

Now one has to create/modify files to meet offline requirements:

• modify entries in SetCppIfdefs.C (enable event building and window check for example)

• book additional histograms in file BookHistogramsOffline.C

• define window settings in DefineVarsAndWdws.C

• place your analysis code in subdirectory udef: udef/Analyze.cxx + .h

You should then be able to perform the config step and to compile and link your code (see 1.10):

./Config.C
make -f DgfAnalyze.mk clean all

Now start C analyze and attach to the .med file which is being actually produced in the online
directory. You may thus perform a ”quasi-online” run in parallel to the real online data acquisition.

13



1.12 How to start a new session in a new directory

To start a new experiment in a new working directory go one level up:

cd /d1/miniball

Then type

mknew <old dir> <new dir>

where <old dir> is the directory you worked before, <new dir> is the one you want to start a new
experiment in.

mknew will do the following:

• copy <old dir>/*.C to <new dir>

• copy <old dir>/.rootrc to <new dir>

• copy <old dir>/*.def to <new dir>

• copy subdirectories <old dir>/udef and <old dir>/config to <new dir>

• create subdirectory <new dir>/ppc

• perform a config step calling <new dir>/Config.C (2x :-()
• compile and link program M analyze to be used by C analyze

You should then be able to run C analyze . Follow instructions in 1.2 to setup your experiment
properly. Don’t forget to re-compile the MBS readout task before starting data acquisition (1.10).

14



1.13 How to produce an ascii dump of .med data

There is a tool called mbs2asc which may be used to dump .med data to ascii for debugging
purposes.

Usage: mbs2asc [-r <rcFile>] [-n <maxEvents>] [-t <rdoTrig>] [-f <dgfFmt>]
[-d <sevtType>] [-v] <mbsFile>

mbsFile raw data file (extension .lmd or .med)

-r <rcFile> use indices and defs from <rcFile> (default: no defs)
-n <maxEvents> process <maxEvents> only (default: end of file)
-t <rdoTrig> readout trigger is <trigger> (default: 1)

(there may be more than one option "-t" in case of multiple triggers)
-f <dgfFmt> use DGF-4C format descriptor <dgfFmt> in case of format errors
-d <sevtType> raw data file contains subevent dumps rather than original mbs data (extension .dmp)

<sevtType> = "dgf" or "caen" (default: none)
-v turn on verbose mode: output hex dump in addition to other data

For example, command

mbs2asc -r .DGFControl.rc -n 10 -v run140.med | less

will produce output

# Program : mbs2asc
# Arguments : -r .DGFControl.rc -n 10 -v run140.med
# Input : run140.med
# Indices & defs : .DGFControl.rc
# Event trigger(s) : 1
# Max number of events : 10
# Verbose mode : on
...

MBS EVT 10 1 14 1 1594049 # start acquisition (trigger #14)
MBS EVT 10 1 1 2 1594050 # readout (trigger #1)
MBS SEVT 9000 1 999 # subevent "Time stamp"
MBS SEVT 10 23 2 # subevent "clu2"
DGF BUF 36 7 257 0 0 65167 65167 # 0024 0007 1101 0000 0000 fe8f # module "dgf21"
DGF EVT 7 1 17443 82979 # 0007 0001 4423
DGF CHN 0 2663 17468 83004 # 0008 443c 0a67 1618 1af0 0000 0000 0000
DGF CHN 1 0 17468 83004 # 0008 443c 0000 0000 0000 ffd5 000b 0000
DGF CHN 2 0 17468 83004 # 0008 443c 0000 0daf 0000 002c 0003 0000
DGF BUF 45 8 257 0 0 65167 65167 # 002d 0008 1101 0000 0000 fe8f # module "dgf22"
DGF EVT 15 1 17443 82979 # 000f 0001 4423
DGF CHN 0 2541 17468 83004 # 0008 443c 09ed 0000 0000 ff70 0021 0000
DGF CHN 1 0 17468 83004 # 0008 443c 0000 0c80 0000 ffe8 0006 0000
DGF CHN 2 0 17468 83004 # 0008 443c 0000 0000 0000 0015 001d 0000
DGF CHN 3 0 17468 83004 # 0008 443c 0000 0000 0000 ffee 0018 0000
DGF BUF 36 9 257 0 0 65166 65166 # 0024 0009 1101 0000 0000 fe8e # module "dgf23"
DGF EVT 7 3 5923 202531 # 0007 0003 1723
DGF CHN 0 12127 5947 202555 # 0008 173b 2f5f 1770 1e57 0000 0000 0000
DGF CHN 1 0 5947 202555 # 0008 173b 0000 0000 0000 ffe1 0010 0000
DGF CHN 2 0 5947 202555 # 0008 173b 0000 0000 0000 ffd7 0016 0000

15



2 Set up and control XIA DGF-4C modules

DGFControl is a program to set up the DGFmodules for the DAQ. It is NOT necessary to restore
the DGF parameter settings for each run. Only if the CAMAC crates have been switched off or the
DGF modules have been booted they have lost their parameters. Fortunately the settings have been
saved and can be restored from file (don’t forget to save your settings after a change!).

CAVEAT: Connecting to DGF modules via DGFControl may disturb a running data acquisition. Be
sure that no daq is running or that you pressed Stop or Pause in the C analyze GUI to stop it.

Open a new xterm window. Then type

DGFControl

The main (system) tab should then show up at your screen (fig. 12.

press Restart ESONE to (re-)start the CAMAC server

press Reload DGFs to download the volatile DSP and FPGA code

(this has to be done whenever the CAMAC crates has been switched off)

press Connect

Then open the Restore tab and reload the appropriate parameter settings.

Visit shortly the Files and Modules tabs to check if the right DSP/FPGA code has been down-
loaded and the DSP parameters are correct. If the file names differ from what you expect you’ll
have to set the proper values in your .rootrc file and to start over. If the shaping times for the
DGFs are not 6.8 us peaking and 2 us gap time, you probably forgot to restore parameters.

The list below describes what the different tabs in DGFControl are meant for.

• System (fig. 12)
Restart ESONE/CAMAC server, reload (= boot) dgf modules, connect to modules if server is
still running

• Modules (fig. 13)
Control and change modules settings, one sheet per module/channel

• Params
Show a given param for all modules. You may change single params or set a param for all
modules selected.

• Traces
Accumulate triggered traces for all modules activated (one trace per module/channel). Data
will be written to a ROOT file trace.root, and may afterwards be looked at via HistPresent.

• Untrig Traces

Collect untriggered traces for all modules selected. Results are stored in file untrigTrace.root
• Offsets

Start a ”ramping dacs” task and adjust offsets. Untriggered traces should then have their
baselines at 4 times the offset value.

• MCA (fig. 14)
Start a MCA run. At end of accumulation histograms will be dumped on the ppc side, then
converted to ROOT format and stored in file mca.root. To be looked at by HistPresent.

• TauDisplay

16



Accumulate a number of triggered traces for selected module. Results will be displayed in a
separate canvas.

• Misc
Miscellaneous: Set/clear GFLT, set COINCWAIT

• Save
Save dgf parameters to disk. Should be done on major changes to the dgf parameters.

• Restore
Restore dgf parameters from disk

• Copy

Copy certain parameters from one module/channel to others
• Files

A list of files currently used
• CPTM (fig. 15)

A panel to control the ”Clock and Programmable Trigger” module (CPTM, Univ Cologne)

Figure 12: DgfControl: how to set up and control XIA DGF-4C modules

17



Figure 13: DgfControl: display parameter settings of XIA DGF-4C modules

18



Figure 14: DgfControl: start a MCA accumation

Figure 15: DgfControl: how to control a CPTM module

19



3 How to perform an energy calibration

Oliver’s program for energy calibration has now been modified to output data compatible with
MARaBOOU. So a conversion of the calibration data thru olli2rudi is no longer necessary.

To do an energy calibration (gamma or particle) call the MacroBrowser:

MacroBrowser

A menu will then pop up showing several ROOT macros. Choose MBcal.C from this list.

You’ll get a form (fig. 16) to specify which type of calibration on which histograms you want to
do:

• Calibration
Choose Co60 or Eu152 for gammas, TripleAlpha for particles

• Histo file / first histo
Click on the folder button and choose the ROOT file containing your calibration spectra.
Choose histogram to start with.

• Histo file / last histo
You have to select the same ROOT file as above. Choose the histogram to end with.

• Calibration output file

where calibration data should be stored.
This name should correspond to entries

TMrbAnalyze.CalibrationFile.DGF (gamma) or

TMrbAnalyze.CalibrationFile.Caen (particle)
in your .rootrc. The extension has to be .cal.

• Results file
where Oliver writes detailed calibration results

• Precalibration file
To get an Eu152 calibration you have to preform a Co60 calibration step first. The name of
the Co60 calibration file has to be given here.

• Verbose output

• Sigma for PeakFind choose at least 5

• Relative percentage for PeakFind 5

• Peaks to be fitted No

• Zero bins in front 100

Press Execute to start the calibration. Resulting calibration files will be read upon restart of
your data acquisition (i.e. on next Start in C analyze). For a description of the file format see
5.3.2

20



Figure 16: MBcal.C: how to do an energy calibration

21



4 How to do a Doppler correction

4.1 Doppler correction modes

To do a Doppler correction you have to create a file containing the correction coefficients for each
histogram. A Doppler correction may be defined in three different ways.

• Using a constant factor
You may have taken the Doppler shift from a fit to your histograms. The dcorr file then has
one entry per histogram containing this factor.

• Using a fixed geometry
If the particle is going in 0◦ forward direction the Doppler correction is given by the particle
verlocity and the detection angle for cores and segments, respectively. Add one entry per
histogram to the dcorr file containing this angle (degrees or radians).

• Using a geometry depending on particle angle
You have to perform kinematic calculations to get velocity and angle for each particle inde-
pendently. The dcorr file should then contain the detection angles with respect to 0◦ for each
core and segment.

Add an entry
TMrbAnalyze.DCorrFile.DGF: <dcorr file>

to your .rootrc. The file extension has to be .dcorr. Doppler correction data will then be read
from this file upon restart of your data acquisition (i.e. on next Start in C analyze).

For a description of the file format see 5.3.3.

22



5 Appendix

5.1 Scripts

There are some scripts that should be run to monitor that everything works as expected. The
purpose and how to start a certain script is explained below:

scaler.sh

This script displays the trigger scalers. See 1.4. It shows the rate with which some detectors or
the DAQ are triggering.
Stop it by pressing Ctrl-C.

dgfscaler.sh

This script displays the internal DGF scalers (1.4).
Stop it by pressing Ctrl-C.

ppac.sh [obsolete]

Script to display the location of the beam in X and Y direction as measured with the PPAC.
No longer used, call ppac.C instead (1.5).

start rate monitor.sh now WITHOUT leading "./"! [obsolete]

Should be started once and should run all the time. It produces the files needed by the plot rate2.gp
script (see below). In case the rate plots are not updating even though the DAQ is running it might
be that this script needs to be started again.
Script exits by itself.
Script is obsolete now – call rateMon.C instead (1.6).

plot rate2.gp now WITHOUT leading "./"! [obsolete]

Gnuplot script that displays the 444 keV rate (bottom) and the beam dump rate (top) for 1, 5,
17, and 34 second averages.
Stop it by pressing Ctrl-C.
Script is obsolete now – call rateMon.C instead (1.6).

monitor rates.sh threshold now WITHOUT leading "./"! [obsolete]

The keyboard bell rings and the screen flashes if the 17 second average 444 keV rate drops below
the threshold given. In that case most likely the beam is gone and it should be checked if every-
thing is still running.
Stop it by pressing Ctrl-C.
Script is obsolete now – call rateMon.C instead (1.6).

CDThresPed2C <CDThres.ped >CDThres.C now WITHOUT leading "./"!

Script used by Config.C during config step to convert pedestal file CDThres.ped to MARaBOOU
commands in CDThres.C. Edit CDThres.ped according to your needs first.

nigel2cluster psFile cluFile

Script to convert Nigel’s miniball config sheet from PostScript to ascii. cluFile is expected to
have extension .def.

23



5.2 Files related to Config.C

5.2.1 Input files

To run a configuration step by executing ./Config.C successfully several input files have to be
present

• in your working directory:

– $HOME/.rootrc and .rootrc
contain ROOT resource definitions to control the config step
define paths to other inputs like templates, macros, etc.

– cluster.def , cluster-void.def , other-dgfs.def

cluster definitions for active clusters, unsed clusters, and other dgf modules, resp.
See 5.3.1 for file format.

– SetCppIfdefs.C defines #ifdef settings for the cpp preprocessor:

∗ Turn on event building (online:off)
∗ Perform a window check for each event (online:no)
∗ Use the CDE detector
∗ Use a pattern unit
∗ Used the beamdump detector

– BookHistograms.C contains user’s histogram definitions. Executed as part of Config.C.
It is recommended to put any histogram defs in this file to increase readability.

– BookHistogramsOffline.C (offline only)
contains additional histogram defs for an offline session

– DefineVarsAndWdws.C (offline only)
defines windows and cuts for an offline session

– cluster.def and cluster-void.def
both define the cluster configuration to be used by Config.C. cluster.def contains
active clusters as given by Nigel’s configuration sheet, whereas cluster-void.def con-
tains crate as well as station numbers for dgf modules currently unused (but present).
Use script nigel2cluster to convert Nigel’s PostScript file to cluster.def.

– other-dgfs.def

defines crate and station numbers for other dgfs such as time stamper and beamdump.
Will also be read by Config.C.

• in subdirectory config (has to be part of resource .rootrc:TMrbConfig.MacroPath)

– UserMacro.C
contains user’s code generation macros either as a replacement of or an extension to
standard macros provided by MARaBOOU (change only if you are an expert).

– several special templates used by UserMacro.C (don’t touch either)

• in subdirectory udef

– BuildEvent.cxx/.h how to build events from user’s raw data

– Analyze.cxx/.h user’s analysis event by event

– TUsrHitEvent.cxx/.h intermediate event structure during event building

– Exp.h final event structure after event building

– HelpFunct.h some helper functions

– Winfo.h window definitions

• in the directory pointed to by resource .rootrc:TMrbConfig.TemplatePath

24



– template files to generate code for readout and analysis, respectively
– templates files to generate files needed for MBS setup

5.2.2 Output files

Any output created by Config.C is written to the user’s working directory. File names will be
derived from the name of the config object in user’s Config.C. If this object is named dgf for

example, any file name created by Config.C will start with the prefix Dgf... . Any file starting
with this prefix may be deleted without consequence - it can be re-generated by simply calling
./Config.C .

• .DgfConfig.rc

any names, counters, indices etc. created during the config step.
Written using ROOT’s resource format.
This file may be input by other service programs (such as DGFControl)

• DgfCommonIndices.h

indices, serial numbers etc. to be used by both readout and analysis programs.
• DgfReadout.c/.h

user’s readout function loaded as part of MBS task m read meb.
• DgfReadout.mk

Makefile to compile and link MBS task m read meb on ppc.
• DgfAnalyze.cxx/.h

user’s code generated automatically. Makes up main part of M analyze.
• DgfAnalyzeGlobals.h

any global definitions such as user’s histograms, windows, variables.
• DgfAnalyze.mk

Makefile to compile and link M analyze for Linux.
• .mbssetup

prototype file containing defs to set up MBS.
Will be modified by C analyze.

• DgfConfig.dat

a printout of the configuration showing subevents, modules, and params (fig.17).

25



Figure 17: DgfConfig.dat: printout of config data

26



5.3 Various file formats

5.3.1 Cluster definition files

The format of cluster definition files is adopted from Nigel Warr’s Miniball Configuration sheet
(fig.18).

Figure 18: cluster.def: define settings for DGF clusters

27



5.3.2 Energy calibration file

An energy calibration file generated by MBcal.C is formatted usind the ROOT resource format. It
consists of a header followed by entries for each histogram.

Header Calib.ROOTFile: <HistoFile>.root
Calib.Source: Co60 or Eu152 or TripleAlpha
Calib.NofHistograms: <N>

Entry Calib.<HistoName>.Xmin: <Value>
(1 per histo) Calib.<HistoName>.Xmax: <Value>

Calib.<HistoName>.Gain: <Value>
Calib.<HistoName>.Offset: <Value>

5.3.3 Doppler correction file

The dcorr file is formatted according to the ROOT resource format. It consists of a header followed
by entries for each histogram / each parameter.

• Constant factor mode

Header DCorr.Type: ConstFactor
DCorr.NofHistograms: <N>

Entry DCorr.<HistoName>.Xmin: <Value>
(1 per histo) DCorr.<HistoName>.Xmax: <Value>

DCorr.<HistoName>.Factor: <Value>

• Fixed angle mode

Header DCorr.Type: FixedAngle
DCorr.NofHistograms: <N>
DCorr.AngleInDegrees: TRUE or FALSE
DCorr.Beta: <Value>

Entry DCorr.<HistoName>.Xmin: <Value>
(1 per histo) DCorr.<HistoName>.Xmax: <Value>

DCorr.<HistoName>.Angle: <Value>

• Particle-dependent angle mode

Header DCorr.Type: VariableAngle
DCorr.NofHistograms: <N>
DCorr.AngleInDegrees: TRUE or FALSE

Entry DCorr.<HistoName>.Xmin: <Value>
(1 per histo) DCorr.<HistoName>.Xmax: <Value>

DCorr.<HistoName>.Angle: <Value>

28


	Getting started
	Login to the DAQ computer
	How to set up and control a list-mode run
	How to run in AutoFile mode
	Display of scaler data
	PPAC beam monitor
	Beam rate monitor
	Laser on/off monitor
	Display of histograms
	How to reset MBS manually
	How to generate and to compile code
	How to establish a directory for an offline session
	How to start a new session in a new directory
	How to produce an ascii dump of .med data

	Set up and control XIA DGF-4C modules
	How to perform an energy calibration
	How to do a Doppler correction
	Doppler correction modes

	Appendix
	Scripts
	Files related to Config.C
	Input files
	Output files

	Various file formats
	Cluster definition files
	Energy calibration file
	Doppler correction file



