Measurement of β -delayed Neutrons Around the Third r-process Peak^{*}

J. Agramunt¹, A. Algora¹, F. Ameil², Y. Ayyad³, J. Benlliure³, M. Bowry⁴, R. Caballero-Folch⁵, F. Calviño⁵, D. Cano-Ott⁶, T. Davinson⁷, I. Dillmann^{8,2}, C. Domingo-Pardo¹, A. Estrade²,

A. Evdokimov^{8,2}, F. Farinon², D. Galaviz-Redondo⁹, A. García-Rios⁶, H. Geissel², W. Gelletly⁴,

R. Gernhuser¹⁰, M.B. Gómez-Hornillos⁵, C. Guerrero¹¹, M. Heil², C. Hinke¹⁰, R. Knöbel²,

I. Kojouharov², J. Kurcewicz², N. Kurz², Y. Litvinov², L. Maier¹⁰, J. Marganiec², M. Marta^{2,8},

T. Martinez⁶, F. Montes¹², I. Mukha², D.R. Napoli¹³, C. Nociforo², C. Paradela³, S. Pietri²,

A. Prochazka², S. Rice⁴, A. Riego⁵, B. Rubio¹, H. Schaffner², C. Scheidenberger^{8,2}, K. Smith^{14,15,2},

E. Sokol¹⁶, K. Steiger¹⁰, B. Sun², J.L. Taín¹, M. Takechi², D. Testov^{17,16}, H. Weick², E. Wilson⁴,

J. Winfield², R. Wood⁴, and P. Woods⁷

¹IFIC, Valencia, Spain; ²GSI, Darmstadt, Germany; ³Univ. de Santiago de Compostela, Spain; ⁴Univ. of Surrey, UK;
⁵Universitat Politecnica de Catalunya, Barcelona, Spain; ⁶CIEMAT, Madrid, Spain; ⁷Univ. of Edinburgh, UK;
⁸Justus-Liebig Univ. Giessen, Germany; ⁹CFNUL, Centro de Fisica Nuclear da Universidade de Lisboa, Portugal;
¹⁰Technische Universität München, Germany; ¹¹CERN, Geneva, Switzerland; ¹²NSCL, Michigan State University, Michigan, USA; ¹³Laboratory Nazionali di Legnaro, INFN, Italy; ¹⁴Department of Physics, Univ. of Notre Dame, Indiana, USA; ¹⁵JINA, Indiana, USA; ¹⁶Joint Institute for Nuclear Research, Dubna, Russia; ¹⁷IPN Orsay, France

Half of the observed solar abundances for the elements heavier than iron is produced by the so-called r process during neutron star mergers or Core Collapse Super Novae. In such scenario a very large neutron flux is present, which produces a wide range of very neutron-rich species on a timescale of few seconds. When the neutron flux ceases these radioactive nuclei decay β^- , in some cases including β -delayed neutrons. These decays deviate the reaction flow back to stability and produce additional neutrons which affect the neutron-to-seed ratio at later phases of the r-process. Calculations [1, 2] of half-lives and β dnemission probabilities (Pn values) show differences of a up to a factor of 10 for regions where no experimental data are available for constraining the models, e.g. at the N=126 shell closure. Therefore new results in this mass region are strongly desired.

The S410 experiment aimed at measuring half-lives and β -delayed neutron branchings of nuclei with A>200 and N>126. A primary beam of ²³⁸U and 1 GeV/u from the SIS impinged on a thick Be target and the produced fragments were in-flight selected via the $B\rho - \Delta E - B\rho$ method in the FRagment Separator (FRS) [3]. The nuclei of interest were slowed down and implanted in the Silicon array detector SIMBA (Silicon IMplantation detector and Beta Absorber) [4], that was used for measuring both implants and β -decays. A surrounding polyethylene matrix with 30 ³He proportional counters embedded (BELEN-30 [5]) detected the emitted β -delayed neutrons with \approx 40% efficiency.

Two different production settings were used, one centred on ²¹⁵Tl and the other on ²¹¹Hg. The standard FRS detectors and data acquisition system allowed to identify event-by-event the isotopes arriving at the final focal plane. Fig. 1 shows the cumulative statistics of species implanted in SIMBA during the whole campaign. These data will provide neutron branchings $P_{\rm n}$ and decay half-lives $t_{1/2}$ in the following phases of the ongoing analysis.

Figure 1: Implanted species during the S410 experiment.

References

- [1] I. Borzov, Physics of Atomic Nuclei, 74 (2011) 1435-1444.
- [2] P. Möller et al., Phys. Rev. C 67, 055802 (2003).
- [3] H. Geissel et al., NIM B70 (1992) 286-297.
- [4] C. Hinke, PhD thesis, TU München.
- [5] M.B. Gómez-Hornillos et al., contribution to GSI Scientific Report 2011

^{*} This work is supported by the Helmholtz association via the Young Investigators Group VH-NG-627.