β -decay of very neutron-rich Rh, Pd, Ag nuclei

K. Smith^{1,2,3}, J. Agramunt-Ros⁴, A. Algora⁴, J. Benlliure⁵, R. Caballero-Folch⁶, D. Cano-Ott⁷,
T. Davidson⁸, I. Dillmann^{3,9}, C. Domingo-Pardo⁴, A. Estrade^{3,10}, A. Evdokimov⁹, T. Faestermann¹¹,
D. Galaviz-Redondo¹², A. García-Rios⁷, H. Geissel^{3,9}, R. Gernhäuser¹¹, M.B. Gómez-Hornillos⁶,
M. Heil³, C. Hinke¹¹, R. Knöbel³, J. Kurcewicz³, Y. Litvinov³, G. Lorusso¹³, L. Maier¹¹,
J. Marganiec³, M. Marta^{3,9}, F. Montes^{2,14}, I. Mukha³, C. Nociforo³, A. Parikh^{6,15}, G. Perdikakis^{2,14},
S. Pietri³, A. Prochazka³, S. Rice¹⁶, B. Rubio⁴, H. Schatz^{2,14,17}, C. Scheidenberger^{3,9}, K. Steiger¹¹,
B. Sun³, J.L. Taín⁴, M. Takechi³, H. Weick³, J.S. Winfield³, R. Wood¹⁶, and P. Woods⁸
¹Department of Physics, University of Notre Dame; ²Joint Institute for Nuclear Astrophysics (JINA);

³GSI Helmholtzzentrum für Schwerionenforschung GmbH; ⁴Instituto de Física Corpuscular, CSIC-Universitat de Valencia; ⁵Universidad de Santiago de Compostela; ⁶Departament de Física i Enginyeria Nuclear, Universitat Politecnica de Catalunya; ⁷CIEMAT; ⁸School of Physics and Astronomy, University of Edinburgh; ⁹II. Physikalisches Institut, Justus-Liebig Universität Giessen; ¹⁰St. Mary's University; ¹¹Department of Physics E12, Technische Universität München; ¹²Centro de Física Nuclear da Universidade de Lisboa; ¹³RIKEN Nishina Center; ¹⁴National Superconducting Cyclotron Laboratory, Michigan State University; ¹⁵Institut d'Estudis Espacials de Catalunya; ¹⁶Department of Physics, University of Surrey; ¹⁷Department of Physics and Astronomy, Michigan State University

The astrophysical origin of about half of the elements heavier than iron have been attributed to the rapid neutron capture process (r-process). Reliable nuclear physics is needed to link theoretical models with astronomical observations. The region around the N = 82 shell closure is of particular interest as it is responsible for the A = 130peak in the solar abundance pattern. The peak is the result of the longer β -decay timescale compared to the neutron capture timescale when the r-process path reaches the shell closure [1] [2] [3].

An experiment to investigate half-lives and β -delayed neutron emission branching ratios of neutron-rich nuclei was performed at the GSI projectile FRagment Separator (FRS) [4]. A 900 MeV/u, ²³⁸U beam delivered by the SIS-18 synchrotron impinged upon a 2480 mg/cm^2 thick beryllium target placed at the FRS entrance. Produced fission fragments were selected in flight via the $B\rho - \Delta E - B\rho$ method. The ions were then implanted at the final focal plane of the FRS into the Silicon IMplantation detector and Beta Absorber (SIMBA) [5]. SIMBA detected implants as well as subsequent β -decays which can be correlated in time and position to its respective implant. The silicon arrays were surrounded with the BEta deLayEd Neutron detector (BELEN-30) [6]. BELEN-30 consisting of 30 ³He tubes embedded in a polyethylene matrix which thermalized and detected β -delayed neutrons emission with an efficiency of about 40%.

Several $B\rho$ settings of the FRS were used during the experiment to yield optimum secondary beam intensities of the ions of interest. Preliminary analysis has identified neutron-rich Rh, Pd, Ag, and Cd isotopes in the region close to the N = 82 shell closure. The identification of the ions implanted into SIMBA has been completed. Figure 1 shows the separation between different species in the particle identification. Some species identified have no previous

measurement of half-life and/or β -delayed neutron emission branching ratio. The determination of the implanted ion's half-lives and branching ratios is currently underway.

Figure 1: Cumulative Implanted Particle IDentification (PID). Isotopes left of the dashed jagged line have known half-lives. Isotopes along the solid line have N = 82.

References

- [1] E. M. Burbidge, et al., Rev. Mod. Phys. 29, 547 (1957)
- [2] J. J. Cowan, et al., Phys. Rep. 208, 267 (1991)
- [3] M. Arnould, et al., Phys. Rep. 450, 97 (2007)
- [4] H. Geissel, et al., Nucl. Intr. and Meth. B, 70 (1992) 286
- [5] C. Hinke, PhD Dissertation, Technische Universität München (2010); GSI-Diss. 2010-15.
- [6] M. B. Gómez-Hornillos, *et al.*, contribution to GSI Scientific Report 2011